Alveolar epithelial fluid transport in acute lung injury: new insights.

نویسندگان

  • C Sartori
  • M A Matthay
چکیده

Pulmonary oedema is a life-threatening condition that frequently leads to acute respiratory failure. From a physiological perspective, pulmonary oedema develops either because of an increase in lung vascular hydrostatic pressure or an increase in lung vascular permeability. Resolution of alveolar oedema depends on the active removal of salt and water from the distal air spaces of the lung across the distal lung epithelial barrier. Much has been learned about the molecular and cellular basis for oedema fluid reabsorption, including the role of apical ion transporters for sodium (epithelial sodium channel) and chloride (cystic fibrosis transmembrane conductance regulator), as well as the central importance of the sodium pump. The rate of fluid clearance can be upregulated by both catecholamine-dependent and -independent mechanisms. Injury to the alveolar epithelium can disrupt the integrity of the alveolar barrier or downregulate ion transport pathways, thus, reducing net alveolar fluid reabsorption and enhancing the extent of alveolar oedema. Endogenous catecholamines upregulate alveolar fluid clearance in several experimental models of acute lung injury, but this upregulation may be short term and insufficient to counterbalance alveolar flooding. There is new evidence, however, that pharmacological treatment with beta2-adrenergic agonists and/or epithelial growth factors may influence a more sustained stimulation of alveolar fluid reabsorption and in turn facilitate recovery from experimental pulmonary oedema. Similar results have been achieved experimentally by gene transfer to enhance the abundance of sodium transporters in the alveolar epithelium. Clinical studies show that impaired alveolar fluid transport mechanisms contribute to the development, severity and outcome of pulmonary oedema in humans. Very recent data suggest that mechanisms that augment transepithelial sodium transport and enhance the clearance of alveolar oedema may lead to more effective prevention or treatment for some types of pulmonary oedema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt and water transport across alveolar and distal airway epithelia in the adult lung.

Substantial progress has been made in understanding the role of the distal airway and alveolar epithelial barriers in regulating lung fluid balance. Molecular, cellular, and whole animal studies have demonstrated that reabsorption of fluid from the distal air spaces of the lung is driven by active sodium transport. Several different in vivo, in situ, and isolated lung preparations have been use...

متن کامل

Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.

Recent studies have suggested that bone marrow-derived multipotent mesenchymal stem cells (MSCs) may have therapeutic applications in multiple clinical disorders including myocardial infarction, diabetes, sepsis, and hepatic and acute renal failure. Here, we tested the therapeutic capacity of human MSCs to restore alveolar epithelial fluid transport and lung fluid balance from acute lung injury...

متن کامل

Upregulation of alveolar epithelial fluid transport after subacute lung injury in rats from bleomycin.

Alveolar epithelial fluid transport was studied 10 days after subacute lung injury had been induced with intratracheal bleomycin (0.75 U). An isosmolar Ringer lactate solution with 5% bovine serum albumin and125I-labeled albumin as the alveolar protein tracer was instilled into the right lung; the rats were then studied for either 1 or 4 h. Alveolar fluid clearance was increased in bleomycin-in...

متن کامل

Bench-to-bedside review: The role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury

Clearance of pulmonary edema fluid is accomplished by active ion transport, predominantly by the alveolar epithelium. Various ion pumps and channels on the surface of the alveolar epithelial cell generate an osmotic gradient across the epithelium, which in turn drives the movement of water out of the airspaces. Here, the mechanisms of alveolar ion and fluid clearance are reviewed. In addition, ...

متن کامل

Sources of alveolar soluble TNF receptors during acute lung injury of different etiologies.

Elevated soluble tumor necrosis factor-α receptor (sTNFR) levels in bronchoalveolar lavage fluid (BALF) are associated with poor patient outcome in acute lung injury (ALI). The mechanisms underlying these increases are unknown, but it is possible that pulmonary inflammation and increased alveolar epithelial permeability may individually contribute. We investigated mechanisms of elevated BALF sT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2002